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A solution that can be used in designing an absorption and exwaction
plant has been found for system of equations (1) describing the pro-
cesses of countercurrent separation of binary mixtures for initial and
boundary conditions (2).

Such separation processes as absorption, extrac-
tion, distillation, and ion exchange are often carried
out in apparatus whose parameters may be assumed
to be uniformly distributed along the length. The ma-
terial balance of an element of length is usually con-
structed for each component of the separated mixture
in each phase. Thus, for a binary mixture under
steady-state hydrodynamic conditions, neglecting
longitudinal mixing and transverse nonuniformity, we
obtain

ox Ox
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The first equation of system (1) is the material bal-
ance of the required component in what we will call
the heavy phase, the second the balance for the light
phase.

It is possible to distinguish several types of bound-
ary and initial conditions for system (1). The condi-
tions typical of fractionating columns have been most
carefully studied. Absorption and extraction are char-
acterized by the following boundary conditions at t = 0:

y(0; 0) =y,
x(Z; 0) = x,. (2)

System (1) is usually solved by reducing it to a
single second-order partial differential equation, to
which a Laplace transformation is then applied, the
solutions being obtained in the form of an infinite ser-
ies {1, 2]. Another approach, suggested by Bowmen
and Briant [3], consists in going over from z and t to
new independent variables of the form £(z;t) and 7(z; t)
in the course of reducing system (1) to a single equa-
tion. As Thomas has shown [4] with reference to a
special case (L = 0), it is then possible to obtain a
solution in finite form expressed in terms of tabulated
functions. We will employ the method developed in [4]
to solve system (1) for boundary conditions (2).

We go over from the variables z and t to the new
variables £ and 1, defined as follows:

E=—hz+ L,
n=hz+Vt. 3)

Substitution into (1) gives

6x= R(x; !/) :__g_y_' (4)

Equation (4) is a necessary and sufficient condition for
existence of the function F given by the equation

dF = xdt — ydn, (5)

from which it follows that

oF oF
x=2 y=—2, (6)

at an

From (4) and (6) we obtain

FF__ R(xy) . M
dgdn Vh +Lh

We must now determine the form of the function
R(x;y). In accordance with the theory of mass transfer
for the region of low concentrations

R=Klay—x),

where K is the volume mass transfer coefficient,
mole/(m3 - sec); 1/« is the distribution coefficient. In-
troducing the abbreviations

_ K ) 2
A~ xin, B rim
we rewrite (7) in the form:
otF oF oF
+A-—+B—=0. 8
dgoy 0% + on (8)

In accordance with [4] we make the substitution
F(& n)=exp[—(BE-+ A Y, ) 9)
then (8) assumes the form

>y

= AB Y. 10
aEam P (10)

From (6) and (9) we obtain equations for expressing
the concentrations in terms of :

2
y = exp [—(BE + An)] (wA— o )

¥ = exp [~ BE+ A1) —%"E’—) (11)



JOURNAL OF ENGINEERING PHYSICS

Boundary conditions of the type in (2) go over into
the following:

PE )= (I +xE)exp(BE),
(0, m) = (1 —ygom)exp (An). (12)

We apply a Laplace transformation to Eq. (10) with
boundary conditions (12):

V& ) =p | $& nexp(—pm)dn,

q

whence

P* (& p) = exp(BE)x

P A p %EP }
x[ p—A B (p—4y + p—A -

Axy—y,B P
exp (ABE/p) | 22 __F |,
+ exp ( vp)[ 3 (p—A)z]

The inverse transform of the function ¢ is given by
the following complex integral:

g4io
i *{E;
TICE p—— 5 YE D) exp(pn)dp,
2mi p

g—icw
which may be represented thus:
. A )
P& a) =expBELAn) {1+ xog__B_ 1 ) +

XgA—y,B
AB

9 .9 )
+ {n Ttk ag}wAn,Ba). (13)

From (11) and (13), using the properties of ¢(n; &) [4]:

aig%iew(m B + 1, VD),

O & _ g0 S
ot =q(n §) T 1,2V n®),
which follow from its definition:
,l —
o(n; §=exp(n) [exp(—9)1, 2V Edds,

4]

we obtain the following expressions:

y= L5 e [—(BE+ An) (s, [L2V ABED +
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+o(An; BY)|—
_ A% 1,2V ABE) + o (An; BE)}, (14)
x=%+exp[—~(B§+An)]x
x[%@(An BE— BAy" p(An; BE)]- (15)

Here, 10(2(§T))1/2) is a Bessel function of zero order
and purely imaginary argument. The integral for

o{n; §) can be evaluated for almost all values of 1 and
£, except very small ones, using the following asymp-
totic expansion {4]:

1—HVE—Vn]*

DB =L
o; &= 3

Xexp(n+§)~;% I, @V ),

in which r = (1/£)/%, and H(&)Y? = (m)¥?) is the error
function.

Equations (14) and (15) also give a solution of the
nonstationary problem for Eq. (10) and boundary con-
ditions (12) and consequently for system (1).

L is the heavy-phase flow (mole/m? - sec); hy, is
the heavy-phase holdup (mole/m3); V is the light~
phase flow (mole/m? - sec); hy is the light-phase hold-
up (mole/m3); R(x; y) is the amount of separated com-
ponent passing from heavy into light phase {mole/m? -

- sec); x is the concentration of separated component
in heavy phase and y in light phase; t is time (sec);

z is the distance along length of apparatus (m); Z is
the total length of apparatus (m).
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